The effect of mychorhizal fungi on increasing of drought resistance in Almond rootstocks under water deficit stress condition

Document Type : Original Article

Authors

Assistant Professor, Soil and Water Research Department, Chaharmahal and Bakhtiari Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shahrekord, Iran.

10.30466/rip.2021.53340.1161

Abstract

In order to evaluate mycorrhizal fungi on physiological characteristics and increase resistance to water-deficient stress in conventional almond (Prunus amygdalus L.) rootstock, a factorial experiment was conducted as a randomized complete block design in three replications at the agricultural and natural research centre of Shahrekoard. The experimental factors of this study included the first factor, mycorrhizal fungi at two level (M0: without and M1 with using of mycorrhizal fungi), the second factor, rootstocks at four level (bitter, local Shorab 2, GF and GN) and third factor water stress at four levels (I1: without stress as a control, I2: 20, I3: 40 and I4: 60 percent of depletion of plant available moisture). The results revealed that the maximum amounts of the studied traits, except leaf proline, were obtained from the GF rootstock. As the water deficit stress increased from I1 to I4 treatment, the studied traits increased. The use of mycorrhizae fungi in deficit treatments significantly increased root and leaf proline, root soluble sugars, and the activity of catalase and peroxidase antioxidant enzymes. The maximum root soluble sugars and leaf proline were obtained from GF+M1 and GN+M0 treatments, respectively. The highest levels of catalase and peroxidase enzymes activity were obtained from I4+M1 and GF+I4 treatments. The maximum and minimum content of leaf soluble sugars were obtained from GN+I4+M0 and GN+I1+M1 treatments, respectively. Inoculation of mycorrhizal fungi increased the resistance of rootstocks to water deficit stress. According to the results of this study, the highest resistance to water deficit stress was obtained from the GF rootstock.

Keywords


احمدی، ک.، قلی­زاده، ح.ا.، عبادزاده، ح.ر.، حاتمی، ف.، حسین ­پور، ر.، کاظمی، ر. و عبدشاه، ه. 1396. آمار نامه کشاورزی در سال 1394-95، جلد 3 محصولات باغی. انتشارات وزارت جهاد کشاورزی، معاونت برنامه‌ریزی و اقتصادی، مرکز فناوری اطلاعات و ارتباطات، 240 ص.
امامی، ع. 1375. روش‌های تجزیه گیاه .جلد اول. موسسه تحقیقات آب و خاک. نشریه شماره ، 982 ص.
امرایی تبار، س.، ارشادی، ا. و رباطی، ت. 1395. تأثیر پوترسین و اسپرمین بر تحمل به خشکی بادام و هلو. به زراعی کشاورزی، 18(1): 218-203.
باقری، و.، شمشیری، م.ح.، شیرانی، ح. و روستا، ح. 1390. اثر قارچ میکوریز­آربسکولار و تنش خشکی بر رشد، روابط آبی، تجمع پرولین و قندهای محلول در نهال ­های دو رقم پایه ­ای پسته اهلی (Pistacia vera L.). مجله علوم باغبانی ایران، 42(4): 365-377.
بهرامی ­نژاد، م.، صداقتی، ا.، شمشیری، م.ح. و بهرامی­ نژاد، ا. 1393 . بررسی نقش همزیستی میکوریزایی در افزایش مقاومت به خشکی دو پایه تجاری بادام. اولین همایش یافته ­های نوین در محیط زیست و اکوسیستم­ های کشاورزی. تهران، ایران.
زارعی، م.، پیمانه، ز. رونقی، ع. کامکار حقیقی، ع.ا. و شهسوار، ع. 1392. اثر قارچ میکوریز آربسکولار بر رشد و پارامترهای فیزیولوژیک پایه رافلمون در شرایط تنش کم‌آبی. نشریه آب ‌و خاک (علوم و صنایع کشاورزی). 27: 485-494.
زکائی­ خسروشاهی، م.، اثنی­ عشری، م.، ارشادی، ا. و ایمانی، ع. 1392. پاسخ ­های فیزیولوژیکی پنج گونه بادام به تنش خشکی ناشی از پلی‌اتیلن گلایکول. 13(2): 73-88.
ضرابی، م.م.، طلایی، ع.، سلیمانی، ع. و حداد، ر. 1389. نقش فیزیولوژیکی و تغییرات بیوشیمیائی شش رقم زیتون (L. Oleaeur opaea) در برابر تنش خشکی. 24(2): 234-244.
طلایی، ع.، قادری، ن.، عبادی، ع. و لسانی، ح. 1390. پاسخهای بیوشیمیایی دو رقم انگور شاهانی و بیدانه سفید به تغییرات پتانسیل آب خاک. علوم باغبانی ایران. 42(3): 301-308.
علیزاده، ا. 1394. رابطه آب و خاک و گیاه. انتشارات دانشگاه فردوسی مشهد. چاپ چهارم، 472 ص.
مرادی، م.، اثنی ­عشری، م. و ارشادی، ا. 1398. ارزیابی برخی از پاسخ­های فیزیولوژیکی پایه ­های پیوند شده و غیرپیوندی بادام به تنش خشکی. علوم باغبانی ایران. 5(2): 311-323.
مشایخی، م.، حبیبی، ف. و امیری، م.ا. 1393. سازوکار تحمل تنش خشکی پایه GF677 (هیبرید هلو و بادام) در شرایط درون شیشه ­ای. به ­زراعی کشاورزی. 16(3): 707-716.
میرزایی، م.، معینی، ا. و قناتی، ف. 1392. اثر تنش خشکی بر میزان پرولین و قندهای محلول گیاهچه ­های کلزا (Brassica napus). زیست‌شناسی ایران. 26(1): 90-98.
Ajay, A., Sairam, R.K. and Srivastava, G.C. 2002. Oxidative stress and antioxidative system inplants, Current Science, 82(10): 1227-1238.
Aliasgharzad, N., Neyshabouri, M.R. and Salimi, G.H. 2006. Effects of arbuscular mycorrhizal fungi and Bradyrhizobium japonicum on drought stress of soybean. Biologia, 61(19): 324-328.
Apel, K. and Hirt, H., 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review Plant Biology, 55: 373-399.
Arzani, K., Yadollahi, A., Ebadi, A. and Wirthensohn, M. 2010. The relationship between bitterness and drought resistance of almond (Prunus dulcis Mill.). African Journal of Agricultural Research, 5(9): 861-866.
Aslanpour, M., Dolati Baneh, H., Tehranifar, A. and Shoor, M. 2016. The effect of mycorrhizal fungion the amount of glycine betaine, soluble sugar, proline, leaf water content and leaf chlorophyll of the white seedless grape under drought stress conditions. International Journal of Advanced Biotechnology and Research, 7(3), 1119-1133
Bárzana, G., Aroca, R. and Ruiz-Lozano, J.M. 2015. Localized and nonlocalized effects ofarbuscular mycorrhizal symbiosis on accumulation of osmolytes and aquaporins and on antioxidant systems in maize plants subjected to total or partial root drying. Plant, Cell and Environment, 38(8): 1613–1627.
Bates, L.S., Waldren, R.P. and Teare, I.D. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1): 205-207.
Brundrett, M., Bougher, N., Dell, B., Grove, T. and Malajczuk, N. 1996. Working with mycorrhizas in forestry and agriculture. Australian centre for international agricultural research, Canberra, 32: 374.
Buysse, J. and Merckx, R. 1993. An improved colorimetric method to quantify sugar content of plant tissue. Journal of Experimental Botany, 44(267): 1627-1629.
Chance, B. and Maehly, A.C. 1955. Assay of catalases and peroxidase. In: Colowick and SP and Kaplan NO (Eds.), Methods in Enzymology. New York Academic Press, 764- 775.
Flexas, J., Barón, M., Bota, J., Ducruet, J.M., Gallé, A., Galmés, J., Jiménez, M., Pou, A., Ribas-Carbó, M., Sajnani, C. and Tomàs, M. 2009. Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri× V. rupestris). Journal of experimental Botany, 60(8): 2361-2377.
Gara, L.D., De Pinto, M.C. and Tommasi, F. 2003. The antioxidant systems vis-a- vis reactive oxygen species during plant-pathogen interaction, Plant Physiology and Biochemistry, 41(10): 863-870.
Gholami, M., Rahemi, M., Kholdebarin, B. and Rastegar, S. 2012. Biochemical responses in leaves of four fig cultivars subjected to water stress and recovery. Scientia Horticulturae, 148: 109-117.
Gonzalez, J.A., Gallardo, M., Hilal, M., Rosa, M. and Prado, F.E. 2009. Physiological responses of quinoa (Chenopodium quinoa Willd.) to drought and waterlogging stresses: dry matter partitioning. Botanical Studies, 50: 35-42.
Hayat, S., Hayat, Q., Alyemeni, M.N., Wani, A.S., Pichtel, J. and Ahmad, A., 2012. Role of proline under changing environments: a review. Plant signaling and behavior, 7(11): 1456-1466.
Hummel, I., Pantin, F., Sulpice, R., Piques, M., Rolland, G., Dauzat, M., Christophe, A., Pervent, M., Bouteillé, M., Stitt, M. and Gibon, Y. 2010. Arabidopsis plants acclimate to water deficit at low cost through changes of carbon usage: an integrated perspective using growth, metabolite, enzyme, and gene expression analysis. Plant physiology, 154(1): 357-372.
Hussain, S., Khalid, M.F., Saqib, M., Ahmad, S., Zafar, W., Rao, M.J., Morillon, R. and Anjum, M.A. 2018. Drought tolerance in citrus rootstocks is associated with better antioxidant defense mechanism. Acta Physiologiae Plantarum, 40(8): 1-10.
Karimi, S., Yadollahi, A. and Arzani, K. 2013. Responses of almond genotypes to osmotic stress induced in vitro. Journal of Nuts, 4(4): 1-7.
Khalafallah, A.A. and Abo-Ghalia, H.H. 2008. Effect of arbuscular mycorrhizal fungi on the metabolic products and activity of antioxidant system in wheat plants subjected to short-term water stress, followed by recovery at different growth stages. Journal of Applied Sciences Research, 4(5): 559-569.
Liu, C., Liu, Y., Guo, K., Fan, D., Li, G., Zheng, Y., Yu, L. and Yang, R. 2011. Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in Karst habitats of southwestern China. Environmental and Experimental Botany, 71(2): 174-183.
Liu, F., Jensen, C.R. and Andersen, M.N., 2004. Drought stress effect on carbohydrate concentration in soybean leaves and pods during early reproductive development: its implication in altering pod set. Field crops research, 86(1): 1-13.
Mardhiah, U., Caruso, T., Gurnell, A. and Rillig, M. 2016. Arbuscular mycorrhizal fungal hyphae reduce soil erosion by surface water flow in a greenhouse experiment. Applied Soil Ecology, 99: 137–140.
Marschner, H. and Dell, B. 1994. Nutrient uptake in mycorrhizal symbiosis. Plant and Soil, 159(1): 89–102.
Palma, J.M., Longa, M.A., del Río, L.A. and Arines, J., 1993. Superoxide dismutase in vesicular arbuscular‐mycorrhizal red clover plants. Physiologia Plantarum, 87(1): 77-83.
Panwar, J.D.S. 1993. Response of VAM and Azospirillum inoculation to water status and grain yield in wheat under water stress conditions. Indian Journal of Plant Physiology, 36: 41-43.
Patakas, A., Nikolaou, N., Zioziou, E., Radoglou, K. and Niotsakis B. 2002. The role of organic solute and ion accumulation in osmotic adjustment in drought-stressed grapevines. Plant Science, 163(2): 361-367.
Porcel, R. and Ruiz-Lozano, J.M. 2004. Arbuscular myocrrhizal influence on leaf water potential, solute accumulation and oxidative stress in soybean plant subjected to drought stress. Journal of Experimental Botany, 55(403): 1743-1750.
Sircelj, H., Tausz, M., Grill, D. and Batic, F. 2007. Detecting different levels of drought stress in apple trees (Malus domestica Borkh.) with selected biochemical and physiological parameters. Scientia Horticulturae, 113(4), 362-369.
Smith, S.E. and Read, D.J. 2008. Mycorrhizal symbiosis, third ed. Academic Press, London. UK.
Wu, Q.S. and Zou, Y.N. 2009. Mycorrhiza has a direct effect on reactive oxygen metabolism of drought-stressed citrus, Plant Soil Environment, 55(10): 436–442.
Wu, Q.S., Zou, Y.N., Xia, R.X. and Wang, M.Y. 2007. Five Glomus species affect water relations of Citrus tangerine during drought stress, Botanical Studies, 48(2): 147-154.
Yin, N., Zhang, Z., Wang, L. and Qian, K. 2016. Variations in organic carbon, aggregation, and enzyme activities of gangue-fly ash-reconstructed soils with sludge and arbuscular mycorrhizal fungi during 6-year reclamation. Environmental Science and Pollution Research 23(17): 17840–17849.